AI Courses by OpenCV

DEEP LEARNING WITH TENSORFLOW & KERAS

Getting Started

- 1. Introduction to Artificial Intelligence
 - History of AI
 - · Applications of AI
 - AI in Computer Vision
 - AI Terminology
 - Introduction to Deep Learning
 - Deep Learning Frameworks
- 2. Numpy Refresher
- 3. Introduction TensorFlow and Keras
- 4. What is inside an ML Algorithm
 - Machine Learning pipeline
 - Solving ML Problems
 - Gradient Descent for Optimization
 - Deep Learning Overview
- 5. Regression: A Classic Supervised Learning Problem

Assignment1: Implement Leaky ReLU, Softmax and Convolution using TensorFlow

Assignment2: TensorFlow Assignment

Assignment3: Implement Gradient Descent for two variables

Module 2: Neural Networks

- 1. Understanding Neural Networks
 - Feature Vectors and Normalization
 - What is Neural Network
 - Demystifying Neural Networks
- 2. Building Neural Network in Keras
 - Data Processing
 - Linear Regression with Keras
 - Binary Classification with Keras
- 3. Building Blocks of a Neural Network
 - Loss Function for Regression
 - Loss Function for Classification
 - Types of Activation Functions
 - How does Neural Network learn
- 4. Multi-class Classification using Keras
 - Classifying MNIST digits with a Multi Layer Perceptron (MLP)
- 5. Model Complexity, Generalization and Handling Overfitting
 - Bias Variance Trade-off
 - How to Prevent Overfitting
- 6. Image Classification using Multilayer Perceptron
- 7. Understand and Implement the building blocks like the different Activation Functions, Loss Functions, Hidden Layers.

Assignment4: MLP Assignment

Convolutional Neural Network

- 1. Image Classification
 - Image classification using CNN
- 2. CNN
 - CNN Building Blocks
 - The Convolution Operation
 - Layers in CNN
 - Implementing LeNet in Keras
- 3. Building custom models from scratch using your own data.
 - Keras Image _Dataset_from_Directory
 - Overfitting and Data Augmentation
- 4. Working with pretrained Networks
 - Important CNN Architectures
 - Pretrained Models for Keras Applications
 - Training VGGNet from Scratch on Balls Dataset
- 5. Transfer Learning and Fine-Tuning
 - Transfer Learning with VGGNet as Feature Extractor on Balls Data
 - Transfer Learning with VGGNet as Feature Extractor on ASL Data
 - Fine Tuning VGGNet using ASL Data

Assignment5: Sequential vs Functional API

Assignment 6: Image Classification using CNN

Project1: Implement an Image Classifier from scratch

Semantic Segmentation

- 1. Introduction to Semantic Segmentation
 - Introduction to Semantic Segmentation
 - Overview of Semantic Segmentation
- 2. Custom Data Loader
 - Semantic Segmentation Datasets
 - Introduction to Segmentation Datasets and Custom Data Loader
- 3. Transposed Convolution
- 4. Fully Convoluted Networks
 - FCN Architecture
- 5. Evaluation Metrics for Semantic Segmentation
- 6. UNet
 - UNet Architecture
 - UNet on Road Data: Metrics and CE Loss
 - UNet on Aerial Data: Metrics and CE Loss
- 7. Custom Losses for Semantic Segmentation
 - UNet on Aerial Data: Metrics and Losses
- 8. Dilated Convolution
- 9. DeepLabV3
 - DeepLabv3 Architecture
 - DeepLabv3+ on Road Data: Metrics and CE Loss
 - DeepLabv3+ on CamVid Data

Project2: Kaggle Competition on Image Classification for American Sign Language Classification

Object Detection

- 1. Introduction to Object Detection
 - History of Object Detection
 - Object Detection Datasets
- 2. Hands on with Object Detector
 - Inference using Object Detection Models from TensorflowHub
- 3. Classification to Detection
 - Image Classification vs Object Detection
 - Revisiting Classification Pipeline
 - Encoding Bounding Boxes using Anchors
 - IoU
 - Encoding of Ground Truth
 - Multiple Anchors
- 4. Non Maximum Suppresion (NMS)
 - Introduction to NMS
 - NMS vs Soft NMS
- 5. Evaluation Metrics
 - Why we need Evaluation Metrics
 - Building Blocks of mAP
 - Precision vs Recall
- 6. Popural Object Detection Architectures
 - Traditional Object Detector
 - Two Stage Object Detector
 - YOLO: You Only Look Once
 - SSD: Single Shot MultiBox Detector
 - RetinaNet

Assignment6: Encoding and Decoding of Ground Truths for Anchor box implementation

Module 7: Pose Estimation

- 1. Real time Pose Estimation using mediapipe
- 2. Create your own Gym Trainer

Project2: Sports Classification using Transfer Learning and Fine Tuning.

Project3: Flood Aerial Imagery Segmentation

Project4: Safety Kit Detection using Object Detection