AI Courses by OpenCV DEEP LEARNING WITH TENSORFLOW & KERAS

Getting Started

- 1. Introduction to Artificial Intelligence
 - History of AI
 - Applications of AI
 - AI in Computer Vision
 - AI Terminology
 - Introduction to Deep Learning
 - Deep Learning Frameworks
- 2. NumPy Refresher
 - NumPy Refresher Part-1
 - NumPy Refresher Part-2
 - NumPy Refresher Part-3
- 3. Introduction TensorFlow
- 4. What is inside an ML Algorithm
 - Machine Learning pipeline
 - Solving ML Problems
 - Gradient Descent for Optimization
- 5. Regression: A Classic Supervised Learning Problem

Assignment 1: Implement Leaky ReLU, Softmax and Convolution using TensorFlow

Assignment 2: Implement Gradient Descent for two variables

Module 2 : Neural Networks

- 1. Understanding Neural Networks
 - Deep Learning Overview
 - What is a Neural Network
 - Feature Vectors and Normalization
 - Demystifying Neural Networks
- 2. Building Neural Network in Keras
 - Introduction to Linear Regression
 - Auto-MGP Data Processing
 - Linear Regression with Keras
 - Binary Classification with Keras
- 3. Building Blocks of a Neural Network
 - Loss Function for Regression
 - Loss Function for Classification
 - Types of Activation Functions
 - How does the network learn?
- 4. Multi-class Classification using Keras
 - Classifying MNIST digits with a Multi-Layer Perceptron (MLP)
- 5. Model Complexity, Generalization and Handling Overfitting
 - Bias Variance Trade-off
 - How to Prevent Overfitting

Assignment 3: Applying a MLP on the Fashion MNSIT Dataset

Module 3 : Convolutional Neural Network

- 1. Image Classification
 - Image classification using CNN
- 2. CNN
 - CNN Building Blocks
 - The Convolution Operation
 - Layers in CNN
 - Implementing LeNet in Keras
- 3. Evaluation metrics for Classification
 - Performance Metrics for Classification
 - Evaluation metrics for Classification
- 4. Building Models with Custom Data
 - Keras Image _Dataset_from_Directory
 - Overfitting and Data Augmentation
- 5. Working with pretrained Networks
 - Important CNN Architectures
 - Pretrained Models for Keras Applications
 - Training VGGNet from Scratch on Balls Dataset
- 6. Transfer Learning and Fine-Tuning
 - Transfer Learning with VGGNet as Feature Extractor on Balls Data
 - Transfer Learning with VGGNet as Feature Extractor on ASL Data
 - Fine Tuning VGGNet using ASL Data

Assignment 4: Sequential vs Functional API

Assignment 5: Image Classification using CNN

Project1: Implement an Image Classifier from scratch

Module 4 : Advance Training Concepts

- 1. Optimizers
- 2. Handling Data in TensorFlow
 - Introduction to TF Data
 - Custom Data Loader using Sequence Model
 - TF Records
- 3. Learning Rate Schedulers
 - Learning Rate Decay Models
 - LR Schedulers
- 4. Gaining Insights
 - GradCam

Project 3: Kaggle Competition - Classification

Module 5 : Semantic Segmentation

- 5. Introduction to Semantic Segmentation
 - Introduction to Semantic Segmentation
 - Semantic Segmentation Datasets
 - Overview of Semantic Segmentation
- 6. Custom Data Loader
 - Introduction to Segmentation Datasets and Custom Data Loader
- 7. Transposed Convolution
- 8. Fully Convoluted Networks

- FCN Architecture
- FCN on Raod Data: CE Loss
- Evaluation Metrics in Semantic Segmentation
- FCN: Custom Metrics and Loss Functions

9. Evaluation Metrics for Semantic Segmentation

10. UNet

- UNet Architecture
- UNet on Road Data: CE Loss
- UNet on CamVid Data: Dice Loss
- 11. Dilated Convolutions
- 12. DeepLabV3
 - DeepLabv3 Architecture
 - DeepLabv3+ on Road Data: CE Loss
 - DeepLabv3+ on CamVid Data: Dice Loss
 - DeepLabv3+ on CamVid Data: Best Results
 - DeepLabv3+ on SUIM Data: CE Loss
 - DeepLabv3+ on SUIM Data: Best Results

Assignment 6: PSPNet

Project 3: Semantic Segmentation

Module 6 : Object Detection

- 1. Introduction to Object Detection
 - History of Object Detection
 - Object Detection Datasets
- 2. Hands on with Object Detector
 - Inference using Object Detection Models from TensorflowHub

- 3. Classification to Detection
 - Image Classification vs Object Detection
 - Revisiting Classification Pipeline
 - Encoding Bounding Boxes using Anchors
 - IoU
 - Encoding of Ground Truth
 - Multiple Anchors
- 4. Non Maximum Suppresion (NMS)
 - Introduction to NMS
 - NMS vs Soft NMS
- 5. Evaluation Metrics
 - Why we need Evaluation Metrics
 - Building Blocks of mAP
 - Precision and Recall
 - Average Precision (AP) and Mean Average Precision (mAP)
- 6. Popural Object Detection Architectures
 - Traditional Object Detectors
 - Two Stage Object Detectors
 - YOLO: You Only Look Once
 - SSD: Single Shot MultiBox Detector
 - RetinaNet
- 7. TensorFlow Object Detetcion API
 - Installation of TFOD
 - Introduction and Infernece using TFOD Pretrained Models
 - Data Preparation in TFOD
 - Pipeloine Configuration in TFOD
 - Inference with a Pretrained Model
- 8. Create a Custom Object Detetcor

- Detetcor Architecture
- Anchor Boxes and Label Encoding
- Anchors Generatio using Keras
- Loss Function
- Decode NMS
- Evaluator in the Pipeline
- Create a Custome Data Loader
- Trainign from Scratch

Assignment 7: Encoding and Decoding of Ground Truths for Anchor box implementation

Project 4: Object Detection

Module 7 : Introduction to Generative Adversarial Networks

- 1. Introduction to GANs
- 2. Vanilla GAN using Fashion MNIST
- 3. DCGAN using Flickr Faces
- 4. CGAN using Fashion MNIST

Module 8 : Introduction to Mediapipe and Applications

- 1. Introduction to Mediapipe
- 2. Posture Analysis using Mediapipe
- 3. Drowsy Driver Detection using Mediapipe